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Abstract. The combined effects of interactions and disorder are investigated using a finite-
temperature quantum Monte Carlo technique for the three-dimensional Hubbard model with random
potentials of finite range. The temperature dependence of the charge compressibility shows that
the Mott gap seems to collapse beyond a finite disorder strength. This is a quantum phase transition
from an incompressible phase to a compressible phase driven by disorder. We calculate the
antiferromagnetic structure factor in the presence of disorder as well. Strong antiferromagnetic
correlation, which is characteristic of the Mott insulator, is destroyed by the presence of a finite
amount of disorder.

1. Introduction

Like the repulsive interaction between electrons, the influence of disorder is crucial in many
electronic systems. Although both of these effects lead to metal–insulator transition, the
physical characters of the resulting transitions are quite different. The repulsive interaction
tends to suppress the double occupancy of electrons. On the other hand, in random potentials,
electrons can favour doubly occupied states if the random potential is sufficiently low at the
site. Therefore, the interaction and disorder may have opposite effects on the charge degree
of freedom. In the insulator due to the interaction (Mott insulator), the charge fluctuation is
strongly suppressed and a finite charge gap opens, while the insulating phase due to disorder
(Anderson insulator) does not necessarily have a charge gap. Another difference between
these two insulators is as regards the existence of a magnetic correlation. Since the repulsive
interaction induces local magnetic moments, the Mott insulator has a strong antiferromagnetic
correlation. On the other hand, the Anderson insulator does not necessarily have an enhanced
magnetic correlation. Therefore one may expect the interaction and disorder to compete as
regards both charge and spin degrees of freedom. In particular, it is important to investigate how
stable the Mott insulator is against disorder. Indeed, many of the correlated electron systems
such as the prototype Mott insulators, heavy-electron systems and the parent compounds of
high-Tc superconductors are intrinsically disordered, in particular upon doping. The effects of
disorder on these systems have been studied in many experiments [1].

The Hubbard model with disorder is one of the simplest models that includes these two
effects. In one and two dimensions, the transition from the Mott to the Anderson insulator is
confirmed by various methods [2–10]. Also the dynamical mean-field theory [11] has been
applied to the infinite-dimensional Hubbard model and consistent results obtained [12]. On
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the other hand, there has been no work beyond the mean-field approximation in the three-
dimensional case [13]. Therefore approximation-free results can be useful for understanding
the three-dimensional strongly correlated system with disorder. This is one of the motivations
of our study.

In the present paper, we study the three-dimensional Hubbard model with random
potentials using a finite-temperature quantum Monte Carlo (QMC) method. The rest of this
paper is organized as follows. In section 2, we introduce the three-dimensional disordered
Hubbard model and describe the physical observables. In section 3, we discuss the effects of
disorder on the charge compressibility and the magnetic structure factor.

2. Model and method

The Hamiltonian of the disordered Hubbard model is given by

H = −t
∑

〈i,j〉σ
(ĉ

†
iσ ĉjσ + ĉ

†
jσ ĉiσ ) + U

∑

i

n̂i↑n̂i↓ +
∑

iσ

win̂iσ (1)

where t is the nearest-neighbour hopping amplitude, 〈i, j〉 is a nearest-neighbour link, U is the
on-site interaction and {wi} are random potentials chosen from a flat distribution in the interval
[−W , W ]. The system is on the cubic lattice in three dimensions and we use the periodic
boundary condition. We treat the system in a grand canonical ensemble with the chemical
potential µ. The grand canonical method is suitable for studying the charge degree of freedom
because the charge fluctuation is taken into account statistically [14]. In this treatment, we
make the system half-filled on average by setting µ = U/2. In the absence of disorder
with sufficiently large U , the ground state is an antiferromagnetic insulator where the charge
fluctuation is strongly suppressed.

In order to obtain approximation-free results, we employ a finite-temperature
determinantal quantum Monte Carlo method [15, 16]. We also use the matrix-decomposition
technique to remove numerical instabilities at low temperatures [17]. The simulations are
performed in the half-filled sector (µ = U/2) for lattices with sizes up to N = 6 × 6 × 6.
We take the strength of the interaction U/t = 6 so that the Néel temperature takes around its
maximum value [18]. (If the interaction is too small, we must perform simulations for larger
systems in order to detect the small charge gap, which is expensive as regards computer time.
On the other hand, for large U , calculations are difficult due to the negative-sign problem.) We
choose a Trotter time-slice size �τ � 0.15/t . We have checked that the systematic error due
to the Suzuki–Trotter decomposition is almost independent of temperature and does not change
any qualitative features. For each realization of disorder, we have typically run 2000 Monte
Carlo sweeps for measurements after 500 sweeps in the warm-up run. For all the observables,
we average over 24 realizations of disorder and the errors are estimated as the variance among
the realizations of disorder. Since the system does not have particle–hole symmetry in each
realization of disorder, the negative-sign problem occurs; for example, the value of the average
sign is ∼0.1 for N = 4 × 4 × 4 and W/t = 1 at temperature T/t = 0.1. Although it is
not so severe as in a doped case, a simulation at a very low temperature with strong disorder
is difficult.

The physical observables that we have calculated are the compressibility κ and the
magnetic structure factor S(q) defined as

κ = 1

N

∂Ne

∂µ
= β

N
(〈N̂2

e 〉 − 〈N̂e〉2) (2)

S(q) = 1

N

∑

i,j

eiq·(ri−rj )〈(n̂i↑ − n̂i↓)(n̂j↑ − n̂j↓)〉 (3)
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where N is the number of sites, Ne is the number of electrons and β is an inverse temperature.
The charge compressibility κ measures the charge fluctuation. If the system has a finite charge
gap, the compressibility shows thermally activated behaviour in a low-temperature region
and vanishes at T = 0. On the other hand, the system without a charge gap has a finite
compressibility at T = 0 due to the existence of low-lying charge excitations. The magnetic
structure factor S(q) at q = (π, π, π) diverges in a low-temperature region when the system
has an antiferromagnetic long-range order.

3. Results and discussion

Figure 1 shows the temperature dependence of the charge compressibility for several different
strengths of disorder. Averaging over 24 realizations of disorder is performed. Without
disorder, the temperature dependence of the compressibility κ shows thermally activated
behaviour reflecting the existence of a finite charge gap. The compressibility κ at T = 0
is zero within the numerical accuracy for the pure system. This indicates that the ground
state of the pure Hubbard model in three dimensions is in an incompressible phase. In the
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Figure 1. The temperature dependence of the charge compressibility κ , where U/t = 6 and
L = 6 × 6 × 6. Without disorder, κ shows thermally activated behaviour and decreases toward
T = 0, indicating the existence of a charge gap. For weak disorder, κ still decreases toward T = 0.
On the other hand, for strong disorder, κ does not show thermally activated behaviour down to the
lowest temperature that we studied. This is a disorder-driven transition from an incompressible
phase to a compressible phase.
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presence of disorder, the compressibility is enhanced. For weak disorder, although enhanced,
the compressibility still shows thermally activated behaviour and the value at T = 0 seems
to be zero. On the other hand, κ does not show thermally activated behaviour for W > Wc

(Wc ∼ U/2) down to the lowest temperature that we studied. This means that the critical
disorder strength required to destroy the Mott gap, Wc, is of the order of the Mott gap, since
the system is in the strong-coupling region (U/t = 6). Although we cannot exclude the
possibility of vanishing κ at T = 0 for strong disorder, what we have given here are the best
data within the numerical restriction. If the strength of disorder is so strong that the interaction
can be negligible (W/U 
 1), the system is essentially the Anderson insulator and there must
be no charge gap. This implies that sufficiently strong disorder destroys the Mott gap, which is
of the order of the interaction in the strong-coupling region. Our results support the discussion
here. In the presence of disorder, when we discuss the physics locally, making one doubly
occupied site provides a potential energy 2W at the maximum, while it costs a Coulomb energy
U . Therefore one may expect the Mott gap to collapse at W > Wc (Wc ∼ U/2) regardless
of the dimensionality in the strong-coupling region. In other words, since charge properties
of the Mott insulators in the strong-coupling region seem to be determined locally [11, 12],
the effect of disorder would also be local and independent of the dimensionality. Indeed, the
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Figure 2. The antiferromagnetic structure factor as a function of temperature (T/t), where U/t = 6
and L = 6 × 6 × 6. For weak disorder, the antiferromagnetic structure factor shows diverging
behaviour down to the lowest temperature that we studied. On the other hand, for strong disorder,
the divergence behaviour is not observed. This indicates that sufficiently strong disorder destroys
the long-range antiferromagnetic correlation which is characteristic of the Mott insulator.
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Mott gap collapses at Wc ∼ U/2 in one [7], two [8] and infinite [19] dimensions in the strong-
coupling region. This is in contrast to the quantum nature of the long-range properties of
the correlation functions which have a drastic difference in dimensionality (e.g. the Luttinger
liquid in one dimension). The transition that we observed is a disorder-driven quantum phase
transition from an incompressible (gapped) to a compressible (gapless) phase. However,
this does not necessarily imply an insulator–metal transition. The compressibility takes a
finite value in both the metallic phase and the insulating phase due to disorder (Anderson
insulator). To distinguish these two phases, one needs simulations for a sufficiently large
system, which we cannot perform because of the negative-sign problem. (In principle, it could
be an interesting problem.)

Figure 2 shows the temperature dependence of the antiferromagnetic structure factor
S(π, π, π). Since the ground state has antiferromagnetic long-range order, S(π, π, π) shows
diverging behaviour toward the Néel temperature in the absence of disorder. For weak disorder,
the structure factor is slightly suppressed, but diverging behaviour is still observed down to the
lowest temperature that we studied. This means that the ground state still has antiferromagnetic
long-range order. When sufficiently strong disorder is included, the temperature dependence
of S(π, π, π) changes qualitatively. Then the diverging behaviour of S(π, π, π) disappears.
This indicates that the long-range antiferromagnetic correlation is also destroyed by a finite
amount of disorder. Ulmke et al argue that weak disorder stabilizes antiferromagnetic order
for U > Uc, where Uc is the interaction for which the Néel temperature takes a maximum
value [8,12]. Since the strength of the interactions that we studied is U � Uc [18], we did not
observe it.

In summary, the three-dimensional Hubbard model with a random potential of finite range
has been studied numerically using a finite-temperature quantum Monte Carlo method. The
temperature dependence of the charge compressibility suggests that sufficiently strong disorder
closes the Mott gap. The transition from an incompressible phase to a compressible phase
occurs at a finite strength of disorder. The disorder also destroys the antiferromagnetic long-
range order which is characteristic of the Mott insulator. As in the case of the Mott gap, the
antiferromagnetic correlation is robust against weak disorder. These features in the three-
dimensional case are common in one-, two- and infinite-dimensional systems.
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